Design of Robust-Fault-Tolerant Parallel Arithmetic Circuits
نویسندگان
چکیده
منابع مشابه
A New Design of Fault Tolerant Comparator
In this paper we have presented a new design of fault tolerant comparator with a fault free hot spare. The aim of this design is to achieve a low overhead of time and area in fault tolerant comparators. We have used hot standby technique to normal operation of the system without interrupting and dynamic recovery method in fault detection and correction. The circuit is divided to smaller modules...
متن کاملRobust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography
We present a new approach to fault tolerant public key cryptography based on redundant arithmetic in finite rings. Redundancy is achieved by embedding non-redundant field or ring elements into larger rings via suitable homomorphisms obtained from modulus scaling. Our approach is closely related to, but not limited by the theory of cyclic binary and arithmetic codes. We present a framework for s...
متن کاملRobust Residue Codes for Fault-Tolerant Public-Key Arithmetic
We present a scheme for robust multi-precision arithmetic over the positive integers, protected by a novel family of non-linear arithmetic residue codes. These codes have a very high probability of detecting arbitrary errors of any weight. Our scheme lends itself well for straightforward implementation of standard modular multiplication techniques, i.e. Montgomery or Barrett Multiplication, sec...
متن کاملTowards a Systematic Design of Fault-Tolerant Asynchronous Circuits
Accommodating billions of transistors on a single die, VLSI technology has reached a scale where principal physical limitations have a strong impact on design principles. Among the particular challenges are maintaining the synchronous clock abstraction in settings where wiring delays dominate over switching delays, and coping with increasing transient failure rates. In an attempt to address som...
متن کاملDesign and Test of New Robust QCA Sequential Circuits
One of the several promising new technologies for computing at nano-scale is quantum-dot cellular automata (QCA). In this paper, new designs for different QCA sequential circuits are presented. Using an efficient QCA D flip-flop (DFF) architecture, a 5-bit counter, a novel single edge generator (SEG) and a divide-by-2 counter are implemented. Also, some types of oscillators, a new edge-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 1992
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.28.528